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Abstract
Given a Lie algebroid and a bundle over its base which is endowed with a
localizable Poisson structure and a flat connection, we construct an extended
bundle whose dual is endowed with an almost-Poisson structure that is a
quadratic Poisson structure when a certain compatibility property is satisfied.
This new formalism on Lie algebroids describes systems with internal degrees
of freedom.

PACS numbers: 02.20.−a, 02.20.Sv, 45.30.+s
Mathematics Subject Classification: 17B66, 70F99, 53D17

1. Introduction

In the last 20 years, the Lie algebroids have been shown to be an important instrument in
the geometrical formulation of many problems in mathematics, mechanics and theoretical
physics. Roughly speaking, a Lie algebroid is a generalization of both a Lie algebra and a
tangent bundle, these being the simplest examples of Lie algebroids. For a detailed study of
this subject, we refer to the books of Cannas et al [1] and of Mackenzie [18].

Since Pradines [22], who introduced the Lie algebroids as infinitesimal objects
corresponding to Lie groupoids, several authors have studied the theory of Lie algebroids
giving important contributions for the knowledge of their properties and applications. Among
others, Higgins et al [10] introduced the notion of prolongation of a Lie algebroid over a map;
Weinstein [23] was the first to study Lagrangian mechanics on Lie algebroids (see also [17])
and obtained the Euler–Lagrange equations using the natural linear Poisson structure existing
on the dual of a Lie algebroid and the Legendre transformation of a regular Lagrangian;
Martı́nez [21] answered a question posed by Weinstein of whether it was possible to develop a
Lagrangian mechanics on Lie algebroids similar to Klein’s formalism for classical Lagrangian
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mechanics, and developed the formalism for the Lagrangian mechanics on Lie algebroids,
generalizing the fundamental geometrical elements of Lagrangian mechanics (see also [15]
and references therein).

In this paper, we generalize the concept of Lie algebroid in such a way that its dual
vector bundle is endowed with a non-linear Poisson structure, such that the Poisson bracket of
basic functions is non-zero and, moreover, the dual of the anchor map of this generalized Lie
algebroid is a symplectic realization of its dual bundle. In classical mechanics, these non-linear
Poisson structures are usually related with dynamical systems that have additional degrees
of freedom (associated with spin and isospin), which we call internal degrees of freedom
(see [4]). We will study in a future work dynamical systems on Lie algebroids with internal
degrees of freedom, as well as we shall solve the generalized Feynman problem on Lie
algebroids, i.e. the problem of, given a second-order differential equation dynamical system,
finding all Poisson tensors on a Lie algebroid such that it is a Hamiltonian vector field.

This paper is organized in the following way. In section 2 we describe the motivation
for introducing generalized Lie algebroids and recall the definition of symplectic realization.
In section 3 the definition and some properties of Lie algebroids are reviewed. In section 4,
we ‘deform’ the linear Poisson structure on a Lie co-algebroid A∗ by a Poisson structure on
a fibre bundle F , using a flat connection on the bundle. This process is called an internal
deformation. We will show that when the connection satisfies a certain compatibility condition
the deformed structure is a quadratic Poisson structure on the extended vector bundle F �� A∗.
The Poisson manifoldF �� A∗ is called a quadratic co-algebroid. Then, given a flat connection
on the fibre bundle F , we define on the extended vector bundle F �� A a structure which
we call generalized Lie algebroid and, by imposing the compatibility condition, we obtain a
quadratic algebroid. In parallel with the case of Lie algebroids, we study the properties of
these generalized Lie algebroids. We prove that the dual bundle of a generalized Lie algebroid
is endowed with a linear Poisson structure and that the dual of a quadratic algebroid is a
quadratic co-algebroid. In section 5, we show that the anchor of a quadratic algebroid is a
Poisson morphism between quadratic co-algebroids. Finally, in the last section some examples
of internal deformation of Lie algebroids are given. The paper closes with an appendix where
we review the concept of a connection of a surjective submersion.

2. Motivation and symplectic realizations

In the geometric formulation of classical mechanics in velocity phase space, we usually
consider ‘localizable’ Poisson structures on the tangent bundle T Q of the configuration space
Q, as associated with regular Lagrangians. In fact, in order for a second-order differential
equation vector field to be the dynamical field of the Hamiltonian system (T Q,ωL,EL) defined
by a regular Lagrangian L, the vertical foliation must be Lagrangian, i.e. the corresponding
Poisson structure is such that the bracket of any two basic functions identically vanishes
[6, 7]. From a quantum point of view, this condition corresponds to the fact that the observables
corresponding to different coordinates position are compatible, i.e. the corresponding self-
adjoint operators commute. Therefore, in the classical limit of the quantum theory, this
condition means that the set of basic functions, i.e. the set of functions in Q, is an Abelian
subalgebra of the Poisson algebra (C∞(T Q), {·, ·}).

Such ‘localizable’ Poisson structures arise, for example, in a natural way in the dual of a
Lie algebroid (as we will see in the next section) (see, e.g., [5]). Although these ‘localizable’
Poisson structures appear in many examples in classical mechanics, they do not describe
systems with internal degrees of freedom (see [4]), because these internal variables are usually
associated with first-order equations of motion. It is possible to show that when the Poisson
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bracket of internal variables satisfies a regularity property, then there exists a symplectic
realization of the Poisson manifold and consequently there exists a Lagrangian realization of
the system, the Lagrangian being however singular (see part II in [4]). Symplectic realizations
over fibre bundles endowed with a Poisson structure arise in this way connected with systems
with internal degrees of freedom.

Such symplectic realizations of Poisson structures also appear in many other examples
of physical interest as we will see in the next sections. Note that the non-degenerate Poisson
structures are but those associated with the symplectic structures.

Definition 2.1. Let (N, {·, ·}) be a Poisson manifold. A symplectic realization of (N, {·, ·}) is
given by a symplectic manifold (M,ω) and a Poisson map φ : M → N .

Let us first look at some examples of symplectic realizations.

Example 2.2. Let N = sl
∗(2, R) be the dual of the Lie algebra sl(2, R). A basis

B = {e1, e2, e3} of sl(2, R) is given by the matrices

e1 = 1

2

(
0 1

−1 0

)
, e2 = 1

2

(
0 1
1 0

)
, e3 = 1

2

(
1 0
0 −1

)
,

that satisfy the following commutation relations:

[e1, e2] = e3, [e2, e3] = −e1, [e1, e3] = −e2.

The corresponding coordinate functions (x1, x2, x3) on sl
∗(2, R) are given by

xi(µ) = µ(ei), µ ∈ sl
∗(2, R),

i.e. if {e1, e2, e3} is the dual basis of B, then µ = µ(ei)e
i . The natural linear Lie–Poisson

structure on sl
∗(2, R) is determined by the following fundamental brackets:

{x1, x2} = x3, {x2, x3} = −x1, {x1, x3} = −x2,

i.e. the Poisson bivector is given by

� = x3
∂

∂x1
∧ ∂

∂x2
− x1

∂

∂x2
∧ ∂

∂x3
− x2

∂

∂x1
∧ ∂

∂x3
.

Let M be the cotangent bundle M = T ∗R endowed with its usual symplectic structure
ω = dq ∧ dp and denote by {·, ·}M the corresponding Poisson bracket. The map
φ : T ∗R → sl

∗(2, R) defined by

φ(q, p) = pe1 + p cos qe2 + p sin qe3,

is such that

φ∗x1 = p, φ∗x2 = p cos q, φ∗x3 = p sin q.

Therefore, φ provides a symplectic realization of (sl∗(2, R), {·, ·}). Indeed, since

{φ∗x1, φ
∗x2}M = {p, p cos q}M = p sin q = φ∗x3 = φ∗{x1, x2}

{φ∗x2, φ
∗x3}M = {p cos q, p sin q}M = (−p sin q)(sin q) − cos q(p cos q) = −p

= −φ∗x1 = φ∗{x2, x3}
{φ∗x1, φ

∗x3}M = {p, p sin q}M = −p cos q = −φ∗x2 = φ∗{x1, x3}
we see that φ is a Poisson map.

Example 2.3. Let us consider the Poisson structure on N = R3 given by the Poisson bivector

� = ∂x1 ∧ ∂x2 + x1∂x2 ∧ ∂x3 ,
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with ∂xi
:= ∂/∂xi , with associated fundamental Poisson brackets:

{x1, x2} = 1, {x2, x3} = x1, {x1, x3} = 0.

Let M be the cotangent bundle M = T ∗R2 endowed with its canonical symplectic structure
ω = dq1 ∧ dp1 + dq2 ∧ dp2 and denote by {·, ·}M the corresponding Poisson bracket. The
map ϕ : T ∗R2 → R3 defined by

ϕ(q1, q2, p1, p2) = (
q1, p1, p2 − 1

2 (q1)2
)
,

is such that

ϕ∗x1 = q1, ϕ∗x2 = p1, ϕ∗x3 = p2 − 1
2 (q1)2

and therefore the following relations hold,

{ϕ∗x1, ϕ
∗x2}M = 1 = ϕ∗{x1, x2}, {ϕ∗x1, ϕ

∗x3}M = 0 = ϕ∗{x1, x3}
and

{ϕ∗x2, ϕ
∗x3}M = ϕ∗x1 = ϕ∗{x2, x3},

which show that the map ϕ provides a symplectic realization of (R3, {·, ·}).

Example 2.4. Let now N be the manifold N = Rn−1 × Rn ≡ R2n−1 with coordinates
(a1, . . . , an−1, b1, . . . , bn) and endowed with the linear Poisson tensor

� =
n−1∑
i=1

n∑
j=1

(−δij + δi+1j )ai∂ai
∧ ∂bj

,

i.e. the associated Poisson bracket is given by the fundamental brackets,

{ai, bj } = (−δij + δi+1j )ai, {ai, ak} = 0, {bj , bl} = 0,

for all i, k = 1, . . . , n − 1 and j, l = 1, . . . , n. The map ϕ : T ∗Rn → R2n−1 defined by

ϕ(q1, . . . , qn, p1, . . . , pn) = 2
(
e

1
2 (q1−q2), . . . , e

1
2 (qn−1−qn),−p1, . . . ,−pn

)
provides a symplectic realization of (R2n−1, {·, ·}) when we consider the cotangent bundle
M = T ∗Rn endowed with its canonical symplectic structure ω = ∑n

i=1 dqi ∧ dpi . Indeed,
we have

ϕ∗ai = 2 e
1
2 (qi−qi+1), for i = 1, . . . , n − 1,

ϕ∗bj = −2pj , for j = 1, . . . , n,

then, if {·, ·}M denotes the Poisson bracket defined by ω,

{ϕ∗ai, ϕ
∗ak}M = 0 = ϕ∗{ai, ak}, {ϕ∗bj , ϕ

∗bl}M = 0 = ϕ∗{bj , bl}
and

{ϕ∗ai, ϕ
∗bj }M = −4

{
e

1
2 (qi−qi+1), pj

}
M

= −2
(
e

1
2 (qi−qi+1)δij − e

1
2 (qi−qi+1)δi+1,j

)
= (−δij + δi+1j )ϕ

∗ai = ϕ∗{ai, bj }.
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3. Lie algebroids

We recall that a Lie algebroid over a differentiable manifold M is a vector bundle p : A → M

whose linear space of sections is endowed with a real Lie algebra structure [·, ·]A and a vector
bundle morphism ρ : A → T M over the identity map on M, called the anchor, that induces
a map between the space of sections, represented by the same symbol, and that satisfies the
following Leibniz-like compatibility condition,

[v1, f v2]A = f [v1, v2]A + (ρ(v1)f )v2, (3.1)

for all pairs (v1, v2) of sections of the bundle A and for all differentiable functions f on the
base M. The Lie algebroid is denoted by (A, ρ, [·, ·]A) or simply by A whenever it is clear to
which Lie algebroid we refer to.

The space �(A) of sections of the bundle p : A → M is a C∞(M) module and the anchor
map ρ is a C∞(M) linear map from the space �(A) into the space X(M) of vector fields on
M. From the condition (3.1) and the Jacobi identity of the Lie bracket [·, ·]A, one can easily
show that the anchor is a Lie algebra homomorphism.

Given a Lie algebroid (A, ρ, [·, ·]A) over a manifold M, let {xi | i : 1, . . . , m} be a local
coordinate set on the open set U of M and {eα | α : 1, . . . , r} a basis of local sections on U of
the vector bundle A. In such local coordinates, the anchor map and the Lie bracket on �(A)

are given by4

[eα, eβ ]A = cαβ
γ eγ , ρ(eα) = ρi

α∂xi ,

where cαβ
γ and ρi

α are differentiable functions on an open set of M, which we call structure
functions of the Lie algebroid. Since ρ is a homomorphism of Lie algebras, these functions
satisfy

ρj
α

∂ρi
β

∂qj
− ρj

β

∂ρi
α

∂qj
= ρi

γ cαβ
γ , i = 1, . . . , m. (3.2)

Moreover, the Leibniz condition and the Jacobi identity imply that∑
cycl(α,β,γ )

[
ρi

γ

∂cβα
µ

∂qi
+ cαβ

νcνγ
µ

]
= 0, µ = 1, . . . , r. (3.3)

Equations (3.2) and (3.3) are known as the compatibility equations of the structure functions
or structure equations of the Lie algebroid.

The simplest (non-trivial) examples of Lie algebroids are the tangent bundle T M → M ,
with ρ = idTM and the Lie bracket on �(T M) being the usual bracket of vector fields on
M, and the finite-dimensional Lie algebra g considered as a vector bundle over a single point
g → {·}. In this case, the anchor is the zero map and the Lie bracket on sections coincides
with the bracket on the Lie algebra. Now we will recall other examples of Lie algebroids that
we will use in the last section.

Example 3.1 (Lie algebra bundle). Let (A, p,M) be a vector bundle and [·, ·] a bilinear and
skew-symmetric bracket, defined on the fibred product A ×M A with values in A, such that
each fibre of A endowed with the bracket is a Lie algebra. In these conditions, we define a Lie
bracket [·, ·]A on the sections of A by setting

[v,w]A(x) = [v(x),w(x)],

4 Hereafter summation in repeated indices will be understood.
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for all x ∈ M and v,w ∈ �(A). The bundle (A, p,M) endowed with the bracket [·, ·]A and
the zero map between A and the tangent bundle T M is a Lie algebroid, which is called the
Lie algebra bundle over the manifold M.

Example 3.2 (The action groupoid). Let φ : M × G → M be a right action of a
Lie group G on the manifold M. For each X in the Lie algebra g of G, there exists
a vector field on M that we call the fundamental vector associated with X, defined by
XM(m) = d/dt[φ(m, exp(tX))]|t=0 = φm∗(X), for all m ∈ M . Moreover, it is well known
that [XM, YM ] = [X, Y ]M . We may identify the linear space �(M × g) of sections of the
bundle M × g → M with the space C∞(M, g) of differentiable functions on M with values
in g. Note that each section V ∈ �(M × g) is of the form V (x) = (x, V (x)), for all x ∈ M ,
where V ∈ C∞(M, g), and this is a one-to-one correspondence which allows us to identify V

with V .
The trivial vector bundle M × g → M can be endowed with a Lie algebroid structure

whose anchor map ρ is given by the infinitesimal action of g on M. This action is considered
as a bundle map from M × g → M into T M → M; ρ(x,X) = XM(x), for all x ∈ M and
X ∈ g. The Lie bracket on the space �(M × g) ∼= C∞(M, g) is given by

[V,W ]M×g(x) = (x, [V (x),W(x)]g + (V (x))MW(x) − (W(x))MV (x)), (3.4)

for all V,W ∈ �(M ×g). This Lie algebroid structure can also be characterized as the unique
Lie algebroid structure such that [X, Y ]M×g = [X, Y ]g for any pair of constant sections and
ρ(x,X) = XM(x) [3].

Example 3.3 (Poisson manifold). Let (M,�) be a Poisson manifold. The bivector � defines
a Poisson structure in M by {f, g} := �(df, dg) and induces a vector bundle morphism
� : T ∗M → T M by means of

〈
βx,�


x(αx)

〉 = �x(αx, βx), for all αx, βx ∈ T ∗
x M and

x ∈ M . This vector bundle map induces a liner map between the linear spaces of their
sections, to be represented by the same symbol, � : �1(M) −→ X(M). The cotangent
bundle T ∗M can be endowed with a Lie algebroid structure whose anchor map is � and the
Lie bracket of sections is defined by (see [9, 19])

[α, β]T ∗M = £�(α)β − £�(β)α − d(�(α, β)). (3.5)

For exact forms, this bracket reduces to [df, dg]T ∗M = d{f, g}, for all f, g ∈ C∞(M). The
triple (T ∗M,�, [·, ·]T ∗M) is called the Lie algebroid of the Poisson manifold (M,�).

Another very remarkable property is that the dual bundle τ : A∗ → M of a given Lie
algebroid (A, ρ, [·, ·]A) over an m-dimensional manifold M is endowed with a natural linear
Poisson structure {·, ·}A∗ , i.e. the Poisson bracket of linear functions on A∗ is still a linear
function on A∗.

In fact, in order to describe the Poisson structure of A∗ it suffices to give the Poisson
brackets of a class of functions such that their differentials span the cotangent space at each
point of A∗. Such a class of functions is given by functions which are affine in the fibres.
Those functions which are constant on the fibres, basic functions, correspond to the pull-back
of functions on M. On the other hand, each section v of A can be identified as a function on
A∗ that is linear in the fibres, i.e. χ : �(A) → L(A∗) maps each section v of A into the linear
function χ(v) on A∗ given by χ(v)(α) = 〈α, v〉, for all α ∈ �(A∗), with 〈·, ·〉 the duality
bracket between �(A∗) and �(A). The bracket {·, ·}A∗ is given by (see, e.g., [5])

{f ◦ τ, g ◦ τ }A∗ = 0, {χ(v), f ◦ τ }A∗ = ρ(v)f ◦ τ, {χ(v), χ(w)}A∗ = χ([v,w]A),

for all f, g ∈ C∞(M) and v,w ∈ �(A).
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The linear Poisson bracket {·, ·}A∗ defines a Poisson tensor that we represent by �A∗ .
Let {xi | i = 1, . . . , m} be a local coordinate set on an open set U of the manifold M and
{eα | α = 1, . . . , r} a basis of local sections of A. In local coordinates, the Poisson tensor
�A∗ is given by

�A∗ = ρi
α∂µα

∧ ∂xi + 1
2cαβ

γ µγ ∂µα
∧ ∂µβ

,

where µα = χ(eα) is the linear function on A∗ associated with the section eα of the basis of
sections of A, and ρi

α and cαβ
γ are the structure functions of the Lie algebroid A.

We shall call the pair formed by the dual bundle A∗ and the linear Poisson structure
Lie co-algebroid.

Let (A, ρ, [·, ·]A) be a Lie algebroid over M and let us consider the cotangent bundle T ∗M
endowed with its canonical symplectic structure. Then we have the following result:

Proposition 3.4 ([20]). The dual map of the anchor of a Lie algebroid (A, ρ, [·, ·]A) over
M, (ρ∗,idM) : (T ∗M,π,M)→ (A∗, τ,M), is a symplectic realization of the Lie co-algebroid
(A∗, {·, ·}A∗).

4. Internal deformation of Lie algebroids

In this section, we consider a Lie algebroid (A, ρ, [·, ·]A) over a manifold M and a fibre bundle
π : F → M , where F is endowed with both a flat connection and a Poisson structure �. The
Poisson structure � on F will satisfy the property of localizability on the bundle, therefore,
� is π -projectable onto 0: if xi represent the local coordinates on the base manifold M and
(xi, ξ a) represent local coordinates on the fibre bundle F , then the Poisson tensor � is given
in local coordinates by

�(x, ξ) = Cab(x, ξ)∂ξa ∧ ∂ξb .

Note that the localizability property of the Poisson tensor � on F just means that
�(dxi, dxj ) = �(dxi, dξa) = 0. This property corresponds in the quantum case to the
fact that the position variables xi must be compatible (‘simultaneously measurable’) among
themselves, and also with the variables ξa .

Definition 4.1 ([4]). A localizable Poisson tensor on a fibre bundle π : F → M is a bundle
Poisson tensor, i.e. a smooth assignment to each fibre of a Poisson tensor �.

When the matrix C = (Cab) is regular, we will state that the Poisson structure � on F is
regular along the fibres. The bundle F is called the internal bundle and the local coordinates
ξa are called internal variables [4].

The main goal of this section is to ‘deform’ the linear Poisson structure on the Lie
co-algebroid A∗ by the Poisson structure on F , in such a way that we obtain a non-linear
Poisson structure on the extended bundle F �� A∗ → F . We call this process an internal
deformation of the Lie co-algebroid.

4.1. Quadratic Poisson structure on F �� A∗

Let us consider the pull-back of the Lie co-algebroid τ0 : A∗ → M by the bundle map
π : F → M , π !A∗ = {(q, α) ∈ F × A∗ | π(q) = τ0(α)}:

π !A∗

τ1

��

τ2 �� A∗

τ0.

��
F π �� M
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We will represent the pull-back bundle π !A∗ by F �� A∗. This space is a vector bundle over
F whose fibres are isomorphic to the fibres of τ0 : A∗ → M; τ−1

1 (q)  A∗
x with x = π(q).

The vector bundle τ1 : F �� A∗ → F can be endowed with a bivector �F��A∗ which is
τ1-projectable onto � and τ2-projectable onto �A∗ , defined by

{f ◦ τ1, g ◦ τ1}F��A∗ = {f, g} ◦ τ1,

{χ(v) ◦ τ2, g ◦ τ1}F��A∗ = ρ̃(v)g ◦ τ1, (4.1)

{χ(v) ◦ τ2, χ(w) ◦ τ2}F��A∗ = χ([v,w]A) ◦ τ2,

for all f, g ∈ C∞(F) and v,w ∈ �(A), where {·, ·} is the Poisson bracket defined by the
Poisson tensor � on F , and

ρ̃(v)(q) := (
T π |Hq

)−1
(ρ(v)(π(q)))

is the horizontal lift of the vector field ρ(v) on M to a vector field on F defined by the
connection of π : F → M (see the appendix). That is, it is defined by a distribution H of F
which is complementary to the vector bundle T πF of π -vertical vector fields on F , such that
Tqπ : Hq → Tπ(q)M is an isomorphism for all q ∈ F ; therefore, TF = H ⊕ T πF .

We observe that the bracket {·, ·}F��A∗ is completely defined by equations (4.1), because
the cotangent space to F �� A∗ is generated by the differentials of the linear functions of the
form χ(v)◦ τ2 and the differentials of basic functions f ◦ τ1 on F �� A∗. Moreover, {·, ·}F��A∗

is an almost-Poisson bracket, i.e. all the properties of a Poisson bracket are satisfied except
possibly the Jacobi identity.

Let now {(xi, µα) | i = 1, . . . , m, α = 1, . . . , r} be a set of local coordinates on the
vector bundle A∗, where the (xi) represent a set of local coordinates on the manifold M and
the µα = χ(eα) are the linear functions associated with the elements eα of a basis of local
sections of A; we call these local coordinates external variables. In local coordinates, the
bivector �F��A∗ defined by (4.1) is given by

�F��A∗ = �b
j ρ

j
α∂µα

∧ ∂ξb + ρi
α∂µα

∧ ∂xi + 1
2cαβ

γ µγ ∂µα
∧ ∂µβ

+ Cab∂ξa ∧ ∂ξb ,

where ρ̃(eα)(x, ξ) = ρi
α(x)∂xi + �b

j (x, ξ)ρj
α(x)∂ξb , ρi

α and cαβ
γ are the structure functions

of A and the symbols �b
j represent the connection ‘coefficients’.

Proposition 4.2. The bivector �F��A∗ is a Poisson bivector, i.e. the bracket defined on F �� A∗

verifies the Jacobi identity, if and only if £ρ̃(v)� = 0, for all v ∈ �(A), which is equivalent to

ρ̃(v){f, g} = {ρ̃(v)f, g} + {f, ρ̃(v)g}, (4.2)

for all f, g ∈ C∞(F) and v ∈ �(A).

Proof. In order to prove the statement, we have to consider the Jacobi identity for any triple of
differentiable functions on F or, equivalently, for three basic functions, three linear functions,
one basic function and two linear functions and finally one linear function and two basic
functions. In the first case, the Jacobi identity holds because {·, ·} is a Poisson bracket on F .
In the second case, it also holds because [·, ·]A is a Lie bracket. When we have two linear
functions and one basic function, the Jacobi identity is satisfied because the connection is flat.
In the last case, we have that

{χ(v) ◦ τ2, {f ◦ τ1, g ◦ τ1}F��A∗ }F��A∗ = {{χ(v) ◦ τ2, f ◦ τ1}F��A∗, g ◦ τ1}F��A∗

+ {f ◦ τ1, {χ(v) ◦ τ2, g ◦ τ1}F��A∗ }F��A∗

is equivalent, from the definition of {·, ·}F��A∗ , to

ρ̃(v){f, g} ◦ τ1 = {ρ̃(v)f ◦ τ1, g ◦ τ1}F��A∗ + {f ◦ τ1, ρ̃(v)g ◦ τ1}F��A∗ ,



Internal deformation of Lie algebroids and symplectic realizations 6905

that is,

ρ̃(v){f, g} ◦ τ1 = {ρ̃(v)f, g} ◦ τ1 + {f, ρ̃(v)g} ◦ τ1

which is condition (4.2). �

In local coordinates, the compatibility condition (4.2) is expressed in the following way,

ρi
α

(
∂Cab

∂xi
+ �d

i

∂Cab

∂ξd
− Cdb

∂�a
i

∂ξd
− Cad

∂�b
i

∂ξd

)
= 0,

which allows one to conclude that it is satisfied when the anchor is zero.
If �F��A∗ is a Poisson tensor, then the Poisson bracket is quadratic {·, ·}F��A∗ , i.e. the

Poisson bracket of linear functions is quadratic on linear functions,

{f (χ(v) ◦ τ2), g(χ(w) ◦ τ2)}F��A∗ = {f, g}(χ(v) ◦ τ2)(χ(w) ◦ τ2)

− ([gρ̃(w)f ] ◦ τ1)(χ(v) ◦ τ2) + ([f ρ̃(v)g] ◦ τ1)(χ(w) ◦ τ2)

+ fg(χ([v,w]A) ◦ τ2)

for all f, g ∈ C∞(F) and v,w ∈ �(A). Therefore, the Poisson structure �F��A∗ on F �� A∗

is non-linear.

Definition 4.3. Given a Lie co-algebroid τ0 : A∗ → M and a fibre bundle π : F → M

equipped with a flat connection and a localizable Poisson structure � that satisfy the
compatibility condition (4.2), then the vector bundle F �� A∗ → F endowed with the
non-linear Poisson structure �F��A∗ given above is called a quadratic co-algebroid.

4.2. Generalized Lie algebroid structure on F �� A

In this section, we will relate the quadratic co-algebroid structure on F �� A∗ with a Lie
algebroid structure on its dual bundle. Note that the dual (F �� A∗)∗ of the extended bundle
F �� A∗ coincides with p1 : F �� A → F , the pull-back of the vector bundle p0 : A → M

by the projection π : F → M , because (F �� A∗)∗q ∼= (A∗)∗π(q) = (A∗
π(q))

∗ = Aπ(q)
∼= (F ��

A)q , for all q ∈ F . The pull-back of the vector bundle p0 : A → M by the projection
π : F → M,F �� A = π !A = {(q, v) ∈ F × A | π(q) = p0(v)}, is a vector bundle over
F whose fibres are isomorphic to the fibres of A, and we have the following commutative
diagram,

F �� A

p1

��

p2 �� A

p0

��
F π �� M

where p1(q, v) = q and p2(q, v) = v. Note that the space of sections of F �� A is a C∞(F)

modulo generated by sections of the form v(q) = (q, v(π(q))) with v ∈ �(A), and this allows
us to conclude that the space �(F �� A) is isomorphic to the space of sections of A along the
map π , �π(A) = {Z : F → A | p0 ◦ Z = π} (see [10]):

v ∈ �(F �� A) �→ v ◦ π ∈ �π(A).

Let us consider a Lie algebroid (A, ρ, [·, ·]A) over a manifold M and a fibre bundle
π : F → M endowed with a localizable Poisson structure � of the form � = Cabξ

a ∧ ξb.
Given a flat connection in the bundle F , the horizontal lift of a vector field X ∈ X(M) is given
by a vector field X̃ ∈ X(F) defined by

X̃(q) = (
T π |Hq

)−1
(X(π(q))),
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for all q ∈ F . Since the connection is flat, these vector fields satisfy

[̃X, Y ] = [X̃, Ỹ ], (4.3)

for all X, Y ∈ X(M), where the bracket on the left-hand side is the bracket of vector fields on
M and the bracket on the right-hand side is the bracket of vector fields on F .

We will endow the vector bundle F �� A over F with a structure that we call a generalized
Lie algebroid structure. The generalized anchor � : F �� A → F �� T M is defined by

�(q, v(π(q))) = (q, ρ(v)(π(q))),

for all q ∈ F and v ∈ �(A). This generalized anchor induces a map between the spaces of
sections, which we represent by the same symbol,

�(f v) = f ρ(v),

whose action on differentiable functions on F is defined by

�(f v)g := f ρ̃(v)g,

for all f, g ∈ C∞(F) and v ∈ �(A). In the space of sections of F �� A we introduce the
following bilinear and skew-symmetric bracket,

[v, gw]F��A := g[v,w]A + (�(v)g)w, (4.4)

for all v,w ∈ �(A) and g ∈ C∞(F).

Remark 4.4. From the definition of the generalized anchor, we conclude that it is C∞(F)

linear because �(f v) = f ρ(v) = f �(v), for all f ∈ C∞(F) and v ∈ �(A).

Proposition 4.5. The bracket defined by (4.4) on the space of sections of F �� A is a Lie
bracket.

Proof. The bracket (4.4) is bilinear and skew-symmetric. To verify the Jacobi identity, we
have to show that∑

cycl

[[f v, gw]F��A, hz]F��A = 0,

for all f, g, h ∈ C∞(F) and v,w, z ∈ �(A). From the definition of [·, ·]F��A, we have∑
cycl

[[f v, gw]F��A, hz]F��A

=
∑
cycl

(fgh[[v,w]A, z]A + {fg�([v,w]A)h}z − h�(z)(fg)[v,w]A)

+
∑
cycl

((f h�(v)g)[w, z]A + (f �(v)g)(�(w)h)z − h�(z)(f �(v)g)w)

−
∑
cycl

(gh(�(w)f )[v, z]A + (g�(w)f )(�(v)h)z − h�(z)(g�(w)f )v). (4.5)

Since the bracket on the sections of A satisfies the Jacobi identity and ρ is a homomorphism
of Lie algebras, we have∑
cycl

(fgh[[v,w]A, z]A + {fg�([v,w]A)h}z) =
∑
cycl

(fg{ ˜[ρ(v), ρ(w)]h}z).
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If we reorganize the terms of (4.5) we obtain∑
cycl

[[f v, gw]F��A, hz]F��A

(4.3)=
∑
cycl

(fg{[ρ̃(v), ρ̃(w)]h}z − f h(�(z)�(v)g)w + gh(�(z)�(w)f )v)

+
∑
cycl

(f h(�(v)g)[w, z]A − h�(z)(fg)[v,w]A − gh(�(w)f )[v, z]A)

+
∑
cycl

(f (�(v)g)(�(w)h)z − h(�(z)f )(�(v)g)w)

+
∑
cycl

(h(�(z)g)(�(w)f )v − g(�(w)f )(�(v)h)z) = 0,

because each cyclic sum is zero. Therefore, the bracket [·, ·]F��A satisfies the Jacobi
identity. �
Definition 4.6. The vector bundle p1 : F �� A → A endowed with the generalized anchor
� : F �� A → F �� T M and the Lie bracket on the sections of F �� A defined by (4.4) is
called a generalized Lie algebroid.

Let {(xi, ξ a) | i = 1, . . . , m, a = 1, . . . , n} be a set of local coordinates on the bundle
π : F → M and {eα | α = 1, . . . , r} a basis of local sections of the vector bundle p0 : A → M .
In local coordinates, the generalized Lie algebroid structure on F �� A is given by

[eα, eβ ]F��A = cαβ
γ eγ , �(eα)xi = ρi

α, �(eα)ξa = �a
j ρ

j
α. (4.6)

The local functions cαβ
γ , ρi

α and �a
j ρ

j
α are called the structure functions of the generalized Lie

algebroid F �� A.

Example 4.7. Let us consider the tangent bundle τM : T M → M endowed with its usual
Lie algebroid structure. The fibre bundle F �� T M → F is endowed with a generalized Lie
algebroid structure. The generalized anchor is the identity map on F �� T M ,

�(q,X(π(q))) = (q,X(π(q))),

and the Lie bracket on the sections ofF �� T M is given, for all X, Y ∈ X(M) and f ∈ C∞(F),
by

[X, f Y ]F��T M = f [X, Y ] + (X̃f )Y ,

where [·, ·] is the usual bracket of vector fields on M. In local coordinates (xi, ξ a) on the
bundle π : F → M and in the basis of sections {∂xi | i = 1, . . . , n} of the tangent bundle
T M , the generalized anchor and bracket are given, respectively, by

[∂xi , ∂xj ] = 0, �(∂xi )xj = δi
j , �(∂xi )ξ a = �a

i .

Since the anchor ρ of the Lie algebroid A is a homomorphism of Lie algebras, from the
definition of the generalized anchor � and the bracket [·, ·]F��A, we can easily prove that the
generalized anchor is a homomorphism of the Lie algebra (�(F �� A), [·, ·]F��A) into the Lie
algebra (�(F �� T M), [·, ·]F��T M),

�([f v, gw]F��A) = �
(
fg[v,w]A + (�(f v)g)w − (�(gw)f )v

)
= fgρ([v,w]A) + (�(f v)g)ρ(w) − (�(gw)f )ρ(v)

= fg[ρ(v), ρ(w)] + (�(f v)g)ρ(w) − (�(gw)f )ρ(v)

= [�(f v), �(gw)]F��T M,

for all f, g ∈ C∞(F) and v,w ∈ �(A).
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Let us recall the following result:

Proposition 4.8 ([5]). The vector bundle p : A → M is a Lie algebroid over M if and only if
the dual bundle admits a Poisson structure whose linear functions form a Lie subalgebra.

As in the case of Lie algebroids, the dual vector bundle F �� A∗ of the generalized Lie
algebroid can be endowed with a linear Poisson structure given by

{f ◦ τ1, g ◦ τ1}1
F��A∗ = 0

{χ(v) ◦ τ2, g ◦ τ1}1
F��A∗ = ρ̃(v)g ◦ τ1 (4.7)

{χ(v) ◦ τ2, χ(w) ◦ τ2}1
F��A∗ = χ([v,w]A) ◦ τ2.

This linear Poisson bracket is obtained from (4.1) in the case where the Poisson structure on F
is the trivial one. Note that, in this particular case, the compatibility condition 4.2 is trivially
satisfied.

Since F �� A∗ is equipped with a linear Poisson structure, the vector bundle F �� A

is endowed with a Lie algebroid structure over F . So, there exists an anchor map
ρ̃ : F �� A → TF and a Lie bracket [·, ·]F��A that satisfy the Leibniz rule,

[v, f w]F��A = f [v,w]F��A + ρ̃(v)f w,

for all v,w ∈ �(F �� A) and f ∈ C∞(F). In fact, the anchor is just the map ρ̃(v) := ρ̃(v),
for all v ∈ �(F �� A), and the Lie bracket [·, ·]F��A on sections of F �� A is the one defined
by (4.4). This Lie algebroid (F �� A, ρ̃, [·, ·]F��A) over F is an action Lie algebroid A � π ,
defined by an action � : �(A) → X(F) of the Lie algebroid A over π , where � is the R

linear map defined by �(v) = ρ̃(v), for all v ∈ �(A), which satisfy the following conditions,

�(f v) = (f ◦ π)ρ̃(v), �(v)(f ◦ π) = ρ(v)f ◦ π, �([v,w]A) = [�(v),�(w)],

for all v,w ∈ �(A) and f ∈ C∞(M). From what we have seen so far, the only
difference between the Lie algebroid (F �� A, ρ̃, [·, ·]F��A) and the generalized Lie algebroid
(F �� A, �, [·, ·]F��A) is on the anchor map. But this is not so important, because the action on
functions is the same and, therefore, the structure functions of the generalized Lie algebroid,
given by (4.6), coincide with the structure functions of the Lie algebroid (F �� A, ρ̃, [·, ·]F��A).
Furthermore, the structure equations of the Lie algebroid F �� A coincide with equations (3.2)
and (3.3). We note that � = π̃ ◦ ρ̃, where π̃ : TF → F �� T M represents the projection of
the tangent bundle TF onto the bundle F �� T M and ρ̃ = h ◦ �, where h : F �� T M → TF
is a section of the map π̃ associated with the flat connection of π : F → M . Therefore,
given a Lie algebroid A and an internal bundle F , a generalized Lie algebroid structure on the
extended bundle F �� A corresponds to a Lie algebroid structure on F �� A.

Since F �� A is a Lie algebroid, we can consider its exterior derivative dρ̃ , which is a
derivation of degree 1 of the exterior algebra �•(F �� A) and nilpotent of order 2, d2

ρ̃ = 0.
On F �� A-k-forms, this operator is defined in the usual way by

dρ̃α(v1, . . . , vk, vk+1) =
k+1∑
i=1

(−1)i+1ρ̃(vi)α(v1, . . . , v̂i , . . . , vk+1)

+
∑

1�i<j�k+1

(−1)i+jα([vi, vj ]F��A, . . . , v̂i , . . . , v̂j , . . . , vk+1), (4.8)

where α ∈ �k(F �� A) and v1, . . . , vk, vk+1 ∈ �(F �� A); the symbol ·̂ means omission of
such elements. Let dρ be the exterior derivative of the Lie algebroid (A, ρ, [·, ·]A) and d the
de Rham operator on the manifold M. Then,

Proposition 4.9. The exterior derivative dρ̃ of the Lie algebroid F �� A satisfies the following
properties:
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(i) dρ̃ ◦ p∗
2 = p∗

2 ◦ dρ ,
(ii) dρ̃ ◦ (ρ ◦ p2)

∗ = (ρ ◦ p2)
∗ ◦ d,

where p2 : F �� A → A.

Proof.

(i) Since dρ̃ and dρ are derivations of degree 1 on the exterior algebras �•(F �� A) and
�•(A), respectively, we just need to prove the equality dρ̃ ◦ p∗

2 = p∗
2 ◦ dρ for forms of

degrees 0 and 1. With forms of degree 0 we obtain

T π ◦ ρ̃ = ρ ◦ p2, (4.9)

and in forms of degree 1 we have

p2 ◦ [v,w]F��A = [v,w]A ◦ π, (4.10)

for all v,w ∈ �(A). From the definitions of the anchor map ρ̃ and of the Lie bracket
[·, ·]F��A, we can conclude that (4.9) and (4.10) hold.

(ii) From condition (i) we have dρ̃ ◦ p∗
2 ◦ ρ∗ = p∗

2 ◦ dρ ◦ ρ∗. Since ρ is a homomorphism of
Lie algebroids then dρ ◦ ρ∗ = ρ∗ ◦ d. Therefore, dρ̃ ◦ p∗

2 ◦ ρ∗ = p∗
2 ◦ ρ∗ ◦ d. �

Let {eα | α = 1, . . . , r} be a basis of local sections of F �� A associated with the local
basis of sections {eα | α = 1, . . . , r} of A and let {eα | α = 1, . . . , r} be the corresponding
dual basis of sections of F �� A∗. The exterior derivative is characterized by its value on
0-forms and 1-forms, so in local coordinates

dρ̃ = �b
i ρ

i
α∂ξb ⊗ eα + ρi

α∂xi ⊗ eα − 1
2cαβ

γ eγ ⊗ eα ∧ eβ.

Note that the structure equations (3.2) and (3.3) of the Lie algebroid F �� A are equivalent to
d2

ρ̃xi = d2
ρ̃ ξ a = 0 and d2

ρ̃eν = 0, respectively.
One can define on the dual bundle F �� A∗ another non-linear Poisson structure by setting

{f ◦ τ1, g ◦ τ1}0
F��A∗ = {f, g} ◦ τ1

{χ(v) ◦ τ2, g ◦ τ1}0
F��A∗ = 0 (4.11)

{χ(v) ◦ τ2, χ(w) ◦ τ2}0
F��A∗ = 0.

This non-linear Poisson bracket is obtained from (4.1) in the case where the Lie algebroid
structure of A is the trivial one. Note that, in this case, the compatibility condition (4.2) is
trivially satisfied. Therefore, the almost-Poisson structure on F �� A∗ given by (4.1) is the
sum of the linear Poisson structure (4.7) with the Poisson structure (4.11),

{·, ·}F��A∗ = {·, ·}0
F��A∗ + {·, ·}1

F��A∗ .

So, when the Lie algebroid (A, ρ, [·, ·]A) and the internal bundle (F, {·, ·}) satisfy the
compatibility condition (4.2), i.e. the bracket {·, ·}F��A∗ is Poisson, we have that the two
Poisson structures (4.7) and (4.11) are compatible.

Definition 4.10. Given a Lie algebroid p0 : A → M and a fibre bundle π : F → M equipped
with a flat connection and a localizable Poisson structure that satisfy the compatibility
condition (4.2), then the vector bundle F �� A → F endowed with the generalized Lie
algebroid structure (�, [·, ·]F��A) is called a quadratic algebroid.

From the above definition, we can conclude that the internal deformation of a Lie algebroid
A by a fibre bundle F endows the extended bundle F �� A with a structure of quadratic
algebroid. Moreover, we conclude that the dual bundle of a quadratic algebroid is a quadratic
co-algebroid. Note that a Lie algebroid is a particular case of a generalized Lie algebroid. In
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fact, a Lie algebroid is a generalized Lie algebroid deformed by the bundle π = idM : M → M ,
where M �� A ≡ A and M �� T M ≡ T M .

Example 4.11 (Tangent bundle). Let us consider the tangent bundle T M endowed with
its natural Lie algebroid structure and a differential manifold N. Let be F = M × N and
π : F = M × N → M the product bundle endowed with the natural connection and a
localizable Poisson structure of the form � = Cab(ξ)∂ξa ∧ ∂ξb . The connection is given by
the horizontal distribution of F,Hq = Tπ(q)M , for all q ∈ F and the horizontal lift of a vector
field X ∈ X(M) to F is given by X̃ = (X, 0) ≡ X and therefore the connection is flat. The
vector bundle κ1 : F �� T M → F

F �� T M

κ1

��

κ2 �� T M

κ0

��
F π �� M

is endowed with a generalized Lie algebroid structure over F . The bundle F �� T M is a
quadratic algebroid because the compatibility condition (4.2) is satisfied

X̃{h1, h2} = {X̃h1, h2} + {h1, X̃h2},
for all h1, h2 ∈ C∞(F) and X ∈ X(M). This condition holds because the function
Cab(ξ) = {ξa, ξb} does not depend on the local coordinates xi ; note that X̃{ξa, ξb} = 0,
for all X ∈ X(M). Since F �� T M is a quadratic algebroid, we may define on the dual bundle
F �� T ∗M

F �� T ∗M

π1

��

π2 �� T ∗M

π0

��
F π �� M

a quadratic co-algebroid structure whose non-linear Poisson structure is given in matricial
form (using Darboux coordinates for the symplectic manifold T ∗M) by

�F��T ∗M =
0 0 −I

0 C 0
I 0 0

 . (4.12)

When the matrix C is invertible the Poisson structure �F��T ∗M is regular, i.e. the Poisson
structure is non-degenerated. In this case, F �� T ∗M is a symplectic manifold.

Given a Lie algebroid (A, ρ, [·, ·]) over a manifold M and an internal bundle π : F → M ,
it is important to observe that when the extended bundle F �� T M is a quadratic algebroid,
then the extended bundle F �� A is also a quadratic algebroid; however, the converse is false.

In the conditions of the above example, let us suppose that the Poisson structure
� = Cab(ξ)∂ξa ∧ ∂ξb on F is such that Cab(0) = 0. Let (�, φ) : (T ∗M,π0,M) →
(F �� T ∗M,π1,F) be the dual morphism of κ2 : F �� T M → T M where φ is such that
π ◦ φ = idM and satisfies φ∗xi = xi and φ∗ξa = 0. Then, we can establish the following:

Proposition 4.12. The morphism (�, φ) is a Poisson morphism, i.e.

{F ◦ �,G ◦ �}T ∗M = {F,G}F��T ∗M ◦ �, (4.13)

for all F,G ∈ C∞(F �� T ∗M), where T ∗M is endowed with its canonical symplectic
structure and F �� T ∗M is equipped with the Poisson structure (4.12).
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Proof. We just have to prove the above condition for either two basic functions, f ◦ π1, or
two linear functions χ0(v) ◦ π2 and for one basic and a linear one. Let us first consider two
basic functions on F �� T ∗M,F = f ◦ π1 and G = g ◦ π1. Then, from the above definition
of the bracket {·, ·}F��T ∗M , we have

{F,G}F��T ∗M ◦ � = {f ◦ π1, g ◦ π1}F��T ∗M ◦ � = {f, g} ◦ π1 ◦ �

and because π1 ◦ � = φ ◦ π0, we still have

{F,G}F��T ∗M ◦ � = {f, g} ◦ φ ◦ π0 = Cab(ξ)
∂f

∂ξa

∂g

∂ξb

◦ φ ◦ π0.

Since Cab(ξ ◦ φ) = Cab(0) = 0, we can conclude that

{F,G}F��T ∗M ◦ � = 0.

On the other hand, from the definition of the Poisson bracket on T ∗M , we have

{F ◦ �,G ◦ �}T ∗M = {f ◦ φ ◦ π0, g ◦ φ ◦ π0}T ∗M = 0

and the condition (4.13) holds. Let us now consider two linear functions F = χ0(v) ◦ π2 and
G = χ0(w) ◦ π2, with v,w ∈ �(T M). Since π2 ◦ � = idT ∗M , we have

{F ◦ �,G ◦ �}T ∗M = {χ0(v), χ0(w)}T ∗M := χ0([v,w]),

that is,

{F ◦ �,G ◦ �}T ∗M = χ0([v,w]) ◦ π2 ◦ �.

Once again, from the definition of the bracket {·, ·}F��T ∗M , we have

{F ◦ �,G ◦ �}T ∗M = {χ0(v) ◦ π2, χ0(w) ◦ π2}F��T ∗M ◦ � = {F,G}F��T ∗M ◦ �.

Finally, we have to prove (4.13) in the case where F = χ0(v) ◦ π2 and G = g ◦ π1. Then,

{F ◦ �,G ◦ �}T ∗M = {χ0(v) ◦ π2 ◦ �, g ◦ π1 ◦ �}T ∗M

= {χ0(v), g ◦ φ ◦ π0}T ∗M

:= v(g ◦ φ) ◦ π0.

Since T φ ◦ v = ṽ ◦ φ, we obtain

{F ◦ �,G ◦ �}T ∗M = ṽg ◦ φ ◦ π0 = ṽg ◦ π1 ◦ �,

and from the definition of {·, ·}F��T ∗M , we conclude that

{F ◦ �,G ◦ �}T ∗M = {χ0(v) ◦ π2, g ◦ π1}F��T ∗M ◦ � = {F,G}F��T ∗M ◦ �.

�

5. Symplectic realizations of F �� A∗

Let us consider a quadratic algebroid (F �� A, �, [·, ·]F��A) obtained by internal deformation
of the Lie algebroid (A, ρ, [·, ·]A) over M by the internal bundle F → M endowed with
a localizable Poisson tensor and a flat connection. We will prove that the dual map of the
generalized anchor, �∗ : F �� T ∗M → F �� A∗, of the quadratic co-algebroid F �� T ∗M is
a Poisson morphism:

T ∗M

π0

��

F �� T ∗M
π2��

π1

��

�∗
�� F �� A∗

τ1

��

τ2 �� A∗

τ0.

��
M Fπ

��
idF

�� F π
�� M
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When the Poisson structure on F is regular along the fibres, i.e. when the matrix of entries
Cab = {ξa, ξb} is invertible, the map �∗ provides a symplectic realization of the quadratic
co-algebroid F �� A∗.

Let H = χ(v) be a linear function on A∗ associated with v ∈ �(A). Then

H ◦ τ2 = χ ′(v),

H ◦ τ2 ◦ �∗ = χ ′
0(�(v)) = χ ′

0(ρ(v)) = χ0(ρ(v)) ◦ π2, (5.1)

where χ ′ : �(F �� A) → L(F �� A∗) and χ ′
0 : �(F �� T M) → L(F �� T ∗M) are

isomorphisms, and L(F �� A∗), L(F �� T ∗M) denote the spaces of linear functions on
F �� A∗ and F �� T ∗M , respectively.

Proposition 5.1. Let (F �� T M, �0, [·, ·]F��T M) and (F �� A, �, [·, ·]F��A) be quadratic
algebroids obtained by internal deformation of the Lie algebroids T M and A, respectively,
by the bundle F → M endowed with a localizable Poisson structure and a flat connection.
Then, �∗ : F �� T ∗M → F �� A∗ is a Poisson morphism.

Proof. We have to show that �∗ is a Poisson morphism, that is,

{F,G}F��A∗ ◦ �∗ = {F ◦ �∗,G ◦ �∗}F��T ∗M, (5.2)

for all affine functions F,G ∈ C∞(F �� A∗). With f, g ∈ C∞(F), we have

{f ◦ τ1 ◦ �∗, g ◦ τ1 ◦ �∗}F��T ∗M = {f ◦ idF ◦ π1, g ◦ idF ◦ π1}F��T ∗M = {f, g} ◦ π1

and therefore,

{f ◦ τ1 ◦ �∗, g ◦ τ1 ◦ �∗}F��T ∗M = {f, g} ◦ τ1 ◦ �∗ = {f ◦ τ1, g ◦ τ1}F��A∗ ◦ �∗.

Now, let us suppose that F = χ(v) ◦ τ2 is a linear function on F �� A∗, associated with the
section v of A, and G = g ◦ τ1 is a basic function on F �� A∗. Then, from (5.1),

{F ◦ �∗,G ◦ �∗}F��T ∗M = {χ0(ρ(v)) ◦ π2, g ◦ π1}F��T ∗M = ρ̃(v)g ◦ τ1 ◦ �∗.

On the other hand,

{F,G}F��A∗ ◦ �∗ = {χ(v) ◦ τ2, g ◦ τ1}F��A∗ ◦ �∗ = ρ̃(v)g ◦ τ1 ◦ �∗

and condition (5.2) holds. Finally, let now F ◦ τ2 = χ(v) ◦ τ2 and G ◦ τ2 = χ(w) ◦ τ2 be two
linear functions on F �� A∗, where v and w are sections of A. Then,

{F ◦ �∗,G ◦ �∗}F��T ∗M = {χ0(ρ(v)) ◦ π2, χ0(ρ(w)) ◦ π2}F��T ∗M.

Since ρ is a Lie algebra homomorphism, we also have

{F ◦ �∗,G ◦ �∗}F��T ∗M = χ0(ρ([v,w]A)) ◦ π2

= χ([v,w]A) ◦ τ2 ◦ �∗

= {χ(v) ◦ τ2, χ(w) ◦ τ2}F��A∗ ◦ �∗

and therefore (5.2) holds. �

As we stated before, when the Poisson structure on F is regular along the fibres, the
non-linear Poisson structure on F �� T ∗M is regular. Then F �� T ∗M is a symplectic
manifold, and therefore the dual map of the generalized anchor is a symplectic realization of
the quadratic co-algebroid F �� A∗.

We note that, in general, the generalized Lie algebroid F �� T M is not a quadratic
algebroid because it does not satisfy the compatibility condition (4.2). Nevertheless, the
vector bundle F �� T ∗M is endowed with an almost-Poisson structure given by (4.1), when
A = T M . In this case, we state that the dual map of the anchor is an almost-Poisson morphism.
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Now, let us suppose that the fibre bundle F satisfies the conditions of proposition 5.1 and
that the Poisson tensor on F is of the form � = Cab(ξ)∂ξa ∧ ∂ξb , regular along the fibres, with
Cab(0) = 0. Then, the morphism (�, φ) : (T ∗M,π0,M) → (F �� T ∗M,π1,F), introduced
in proposition 4.12, is a symplectic realization of the quadratic co-algebroid F �� T ∗M .
Moreover, we conclude that the composition �∗ ◦ � : T ∗M → F �� A∗ is a Poisson
morphism over the map φ : M → F and, therefore, it is a symplectic realization of the
quadratic co-algebroid F �� A∗. The dual map of �∗ ◦ � is the vector bundle morphism
σ = κ2 ◦ � : F �� A → T M over the map π : F → M ,

F �� A

p1

��

� �� F �� T M

κ1

��

κ2 �� T M

κ0

��
F

idF

�� F π
�� M

given by

σ(q, v(π(q))) = ρ(v)(π(q)),

for all q ∈ F and v ∈ �(A). The following conditions hold,

(i) σ = T π ◦ ρ̃,
(ii) σ ◦ [v,w]F��A = [ρ(v), ρ(w)] ◦ π ,

for all v,w ∈ �(A). Thus, σ is a Lie algebroid homomorphism.

6. Some examples of internal deformation

In this section, we will give some examples of internal deformations of a Lie algebroid
(A, ρ, [·, ·]A) over a manifold M by internal bundles F → M endowed with a localizable
Poisson structure � and a flat connection.

6.1. Lie algebra bundle

Let π : F → {·} be a fibre bundle with a unique fibre F endowed with a localizable Poisson
structure of the form � = Cab∂ξa ∧ ∂ξb , where Cab are constants. The natural connection of
this bundle is defined by the distribution Hq = {0}, for all q ∈ F , and the horizontal lift to
F of the vector field X = 0 is X̃ = 0. Therefore, the connection is obviously flat. Given a
finite-dimensional Lie algebra g, we can consider g as a Lie algebroid over the set {·}—the
anchor ρ is zero and the bracket on the sections is given by the Lie bracket of the Lie algebra.
The internal deformation of g by F is represented by the following diagram,

F �� g

p1

��

p2 �� g

p0

��
F π �� {·}

where p1(q,X) = q and p2(q,X) = X, for all q ∈ F and X ∈ g. The generalized Lie
algebroid structure on F �� g is given by

[eα, eβ ]F��g = cαβ
γ eγ , �(eα)ξa = 0,

where cαβ
γ are the structure constants of the Lie algebra g and eα are the elements of a basis

of sections in the space �(F �� g)  C∞(F; g). Note that the space C∞(F; g) is generated
by a set of constant functions sα(q) = eα , where the elements eα define a basis of g. Since the
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trivial bundle F × g → F coincides with the vector bundle F �� g → F , one can show that
the structures of Lie algebra bundle and Lie algebroid on F �� g are the same.

With these conditions, we easily prove the compatibility condition (4.2),

�(X){f, g} = {�(X)f, g} +
{
f, �(X)g

}
,

for all X ∈ �(g) and f, g ∈ C∞(F); note that �(X)f = ρ̃(X)f = 0. Therefore, the
vector bundle p1 : F �� g → F is endowed with a quadratic algebroid structure and its dual
τ1 : F �� g∗ → F is endowed with a quadratic co-algebroid structure, whose non-linear
Poisson bracket is given by

{χ(eα), χ(eβ)}F��g∗ = cαβ
γ χ(eγ ),

{χ(eα), ξa}F��g∗ = 0,

{ξa, ξb}F��g∗ = Cab.

In the matricial form, the Poisson structure on F �� g∗ is given by

�F��g∗ =
(

C 0
0 c

)
,

where C = (Cab) and c = (cαβ) with cαβ = cαβ
γ χ(eγ ).

6.2. Poisson manifold

Let (M,�) be a Poisson manifold and N a differentiable manifold. We will deform the
Lie algebroid structure on T ∗M , defined by the Poisson tensor �, by the internal bundle
π : F = M × N → M endowed with a localizable Poisson structure of the form
�(x, ξ) = Cab(ξ)∂ξa ∧ ∂ξb . The natural connection of the bundle F is defined by the
distribution Hq = Tπ(q)M , for all q ∈ F . In this case, the horizontal lift of X ∈ X(M) to F is
a vector field on F given by X̃(q) = (X(π(q)), 0) ≡ X(π(q)), for all q ∈ F .

Let us consider a generalized Lie algebroid structure on the vector bundle π1 : F ��
T ∗M → F . Since the compatibility condition (4.2) holds, F �� T ∗M is a quadratic algebroid.
The dual vector bundle κ1 : F �� T M → F is endowed with a non-linear (quadratic) Poisson
structure, given in the matricial form by

�F��T M =
 0 0 �

0 C 0
� 0 ϒ

 ,

where C = (Cab),� = (�ij ) and ϒ = (ϒij ) with ϒij = {χ(dxi) ◦ κ2, χ(dxj ) ◦ κ2}F��T M . If
� is a non-degenerated tensor and C is invertible, then the non-linear Poisson tensor �F��T M

is regular.

6.3. Group action

Let G be a Lie group with a Lie algebra g that acts on the Poisson manifold (M, {·, ·}M) and
let π : F = M × N → M be the product bundle, where N is a differentiable manifold,
endowed with a localizable Poisson structure {·, ·}. As we have already remarked, the
natural connection of the bundle F is defined by the distribution Hq = Tπ(q)M , for all
q ∈ F . In this case, the horizontal lift of X ∈ X(M) to F is a vector field on F given by
X̃(q) = (X(π(q)), 0) ≡ X(π(q)), for all q ∈ F .

Let us suppose that the group action is Hamiltonian, i.e. for each X ∈ g there is a function
HX ∈ C∞(M) such that the fundamental vector field XM on M is Hamiltonian with
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Hamiltonian function HX. Such correspondence is linear. Suppose also that the Poisson
bracket on M defines a Poisson bracket {·, ·}F on F which is compatible with the bracket {·, ·},
{f ◦ π, g ◦ π}F = {f, g}M ◦ π, {f ◦ π,G}F = 0, {F,G}F = 0,

for all f, g ∈ C∞(M) and where F and G are functions on F that only depend on N.
The internal deformation of the Lie algebroid M ×g → M by the bundle F is a quadratic

algebroid. Indeed,

ρ̃(sX) = {HX ◦ π, ·}F
because ρ(sX) = XM = {HX, ·}M for all constant sections sX(x) = (x,X) of the trivial
bundle M × g → M . Since the Poisson brackets {·, ·}F and {·, ·} are compatible, we have

ρ̃(sX) {F,G} = {HX ◦ π, {F,G}}F = {{HX ◦ π, F }F ,G} + {F, {HX ◦ π,G}F } ,

that is,

ρ̃(sX) {F,G} = {ρ̃(sX)F,G} + {F, ρ̃(sX)G},
for all F,G ∈ C∞(F). The quadratic algebroid structure of F �� (M × g) is given by

[v,w]F��(M×g) = [v,w]M×g, �(sX)xi = ρ(sX)xi = XMxi, �(sX)ξa = 0,

for all X ∈ g and v,w ∈ �(M × g). The dual vector bundle F �� (M × g∗) → F is a
quadratic co-algebroid, and so it is endowed with a quadratic Poisson structure.

6.4. Free motion

Let F be the trivial vector bundle Q × V → Q where Q is an m-dimensional manifold with
local coordinates qi and V is an n-dimensional real linear space with coordinates Ia . The free
motion on V is characterized by

İ a = 0.

Let η be a Riemannian metric on Q. Free motion on Q would be described by the geodesics
of such a metric. Consider now the following singular Lagrangian associated with the free
system

L = T + ĉ,

where T is the kinetic energy of the system defined by the metric η, and ĉ is the linear function
on T V defined by a 1-form c on V , by setting ĉ(w) = 〈cI , w〉 for all w ∈ TIV ≡ V , such
that, the 2-form dc is symplectic on V . The 2-form dc defines a regular Poisson structure
on V ,

� = Cab(I )∂Ia
∧ ∂Ib

.

This Poisson structure can be consider as a localizable Poisson structure on the bundle
F = Q × V → Q.

In local coordinates, the Lagrangian is written in the following way,

L(q, v, I, İ ) = 1
2ηij (q)vivj + ca(I )İ a

and the Cartan forms of order 1 and 2 are given by

θL = ηij v
i dqj + ca(I ) dIa,

ωL = vi

(
∂ηij

∂qk
− ∂ηik

∂qj

)
dqj ∧ dqk + ηkj dqj ∧ dvk + Cab dIa ∧ dIb,
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where Cab are the entries of the inverse matrix of (Cab). Let � : TF → F �� T Q be the
projection of TF onto F �� T Q. The pre-symplectic form ωL in TF is �-projectable: there
exists a symplectic form ω on F �� T Q such that �∗ω = ωL. Thus, the fundamental Poisson
brackets characterizing such a symplectic structure on F �� T Q are

{vi, qj }F��TQ = −ηij , {vi, vj }F��TQ = ηirarlη
lj , {Ia, Ib}F��TQ = Cab,

where vi = χ ′(dqi) is the linear function on F �� T Q associated with the local
section dqi of T ∗Q,ηjk represents the entries of the inverse matrix of η = (ηkj ) and
arl = vk(∂ηkl/∂qr − ∂ηkr/∂ql). Note that {qi, qj }F��TQ = 0 = {qi, Ia}F��TQ.

The vector bundle F �� T Q endowed with the above Poisson structure is a quadratic
co-algebroid. Therefore, the dual bundleF �� T ∗Q is endowed with the following generalized
Lie algebroid structure:

[dqi, dqj ]F��A = ηir

(
∂ηkl

∂qr
− ∂ηkr

∂ql

)
ηlj dqk, �(dqi)qj = −ηij , �(dqi)Ia = 0.
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Appendix. Connection of a surjective submersion

Let us consider a fibre bundle π : F → M . We denote by T πF the vertical distribution
of vector fields on F with zero projection by the differential of π . A connection of π

(or Ehresmann connection) is given by a differential distribution H of F , which we call
horizontal distribution. This distribution is a complementary distribution of T πF that projects
onto T M; that is, Hq  Tπ(q)M for all q ∈ F . Then, the tangent bundle TF can be decomposed
as a direct sum TF = H ⊕ T πF . There are other (equivalent) ways of defining a connection
of π (see [2, 8, 16]). For example, we can define a connection as a global section of the first
jet bundle J 1π → F or as a splitting of the exact sequence

0 −→ T πF −→ TF π̃−→ F �� T M −→ 0,

where F �� T M = π !(T M) = {(f,X) ∈ F × T M | π(f ) = κ0(X)} is the pull-back of the
tangent bundle κ0 : T M → M by the map π : F → M ,

F �� T M

κ1

��

κ2 �� T M

κ0

��
F π

�� M

and π̃ represents the projection of the tangent bundle TF onto the bundle F �� T M , i.e., a
splitting of the exact sequence is a section for π̃ : a differentiable map h : F �� T M → TF
such that π̃ ◦ h is the identity map on the vector bundle F �� T M . Examples of these
connections and their applications in physics can be found in [11]–[14].
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From the definition of ρ-connection of π given by Cantrijn et al [2], the map
h : F �� T M → TF is a idTM -connection of π , i.e. it is a morphism of vector bundles
over the identity map on F such that the following diagram is commutative,

F �� T M

κ2

��

h �� TF
T π

��
T M

idTM

�� T M

where κ2 : F �� T M → T M is a projection given in local coordinates by

κ2(x
i, ξ a, vj ) = (xi, vj ),

where (xi, vj ) represents the local coordinates on the tangent bundle T M and (xi, ξ a)

represents the local coordinates on the fibre bundle F . In local coordinates, h is given
by

h(xi, ξ a, vj ) = (xi, ξ a, vj , �a
j v

j ) ≡ vj∂xj + �a
j v

j ∂ξa ,

where the symbols �a
j are called the ‘coefficients’ of the connection h.

Let X be a vector field on M that locally is written as X = Xj∂xj . The horizontal lift X̃

of the vector field X associated with the connection h is given locally by

X̃ = h(xi, ξ a,Xj ) = Xj∂xj + �a
j X

j∂ξa .

There is a map C : X2(M) → T πF associated with the connection h of π : F → M called
curvature form (see [18]), defined by setting

C(X, Y ) = [̃X, Y ] − [X̃, Ỹ ].

The curvature form measures the lack of integrability of the horizontal distribution H associated
with the connection h. The distribution H is integrable if the connection is flat, i.e. if the
curvature form is zero. Given X, Y ∈ X(M), the horizontal lift of the vector fields X and Y
are locally given by X̃ = Xi∂xi + �a

k X
k∂ξa and Ỹ = Y j∂xj + �b

r Y
r∂ξb , respectively. In local

coordinates, the connection is flat if

XiY j

(
∂�b

j

∂xi
− ∂�b

i

∂xj
+ �a

i

∂�b
j

∂ξa
− �a

j

∂�b
i

∂ξa

)
= 0,

that is, (
∂�b

j

∂xi
− ∂�b

i

∂xj
+ �a

i

∂�b
j

∂ξa
− �a

j

∂�b
i

∂ξa

)
= 0.
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groupoı̈des infinitésimaux C. R. Acad. Sci. Paris A 264 245–8
[23] Weinstein A 1996 Lagrangian mechanics and groupoids Mechanics Day (Am. Math. Soc., Fields Inst. Commun.

vol 7) ed W F Shadwick, P S Krishnaprasad and T S Ratiu (Providence, RI: American Mathematical Society)
pp 207–31

http://dx.doi.org/10.1088/0305-4470/14/10/012
http://dx.doi.org/10.1088/0305-4470/16/16/014
http://dx.doi.org/10.1143/PTP.68.1082
http://dx.doi.org/10.1016/0021-8693(90)90246-K
http://dx.doi.org/10.1016/0370-2693(87)90043-8
http://dx.doi.org/10.1016/0370-2693(88)90088-3
http://dx.doi.org/10.1016/0370-2693(88)90351-6
http://dx.doi.org/10.1016/0370-2693(88)91444-X
http://dx.doi.org/10.1088/0305-4470/38/24/R01
http://dx.doi.org/10.1007/BF01466596
http://dx.doi.org/10.1023/A:1011965919259

	1. Introduction
	2. Motivation and symplectic realizations
	3. Lie algebroids
	4. Internal deformation of Lie algebroids
	4.1. Quadratic Poisson
	4.2. Generalized

	5. Symplectic
	6. Some examples of internal deformation
	6.1. Lie algebra bundle
	6.2. Poisson manifold
	6.3. Group action
	6.4. Free motion

	Acknowledgments
	Appendix. Connection of a surjective submersion
	References

